Dr. Byeongchan So

Dr. Byeongchan So

Current position
  • Scientist (IPS at KIT)
Previous position
  • 2019 - 2020 Postdoctoral researcher (Center for Advanced Nano Semiconductors, KPU)
Education
  •  2015 – 2019 Ph.D.,  Korea Polytechnic University (KPU)
  •  2013 – 2015 M.Eng., Korea Polytechnic University
  •  2007 – 2013 B.Eng., Korea Polytechnic University
Field of research
  • MOVPE growth of AlN/AlGaN/GaN/InGaN material for UVC/Visible LED
  • III-Nitride nanostructure using MOVPE
  • Fabrication of III-Nitride based optoelectronic semiconductor devices

 

Publications


  1. Diamond Schottky barrier diodes fabricated on sapphire-based freestanding heteroepitaxial diamond substrate
    Kwak, T.; Lee, J.; Choi, U.; So, B.; Yoo, G.; Kim, S.; Nam, O.
    2021. Diamond and related materials, 114, Art.-Nr.: 108335. doi:10.1016/j.diamond.2021.108335
  2. Void containing AlN layer grown on AlN nanorods fabricated by polarity selective epitaxy and etching method
    So, B.; Lee, J.; Cheon, C.; Lee, J.; Choi, U.; Kim, M.; Song, J.; Chang, J.; Nam, O.
    2021. AIP Advances, 11 (4), Art.-Nr.: 045036. doi:10.1063/5.0042631
  3. Large-area far ultraviolet-C emission of AlGaN/AlN multiple quantum wells using carbon nanotube based cold cathode electron-beam pumping
    Lee, J.; Yoo, S. T.; So, B.; Park, K. C.; Nam, O.
    2020. Thin solid films, 711, Art.-Nr.: 138292. doi:10.1016/j.tsf.2020.138292
  4. Epitaxial growth of deep ultraviolet light emitting diodes with two-step n-AlGaN layer
    So, B.; Cheon, C.; Lee, J.; Lee, J.; Kwak, T.; Choi, U.; Song, J.; Chang, J.; Nam, O.
    2020. Thin solid films, 708, Art.-Nr.: 138103. doi:10.1016/j.tsf.2020.138103
  5. Boron‐Doped Single‐Crystal Diamond Growth on Heteroepitaxial Diamond Substrate Using Microwave Plasma Chemical Vapor Deposition
    Kwak, T.; Lee, J.; Yoo, G.; Shin, H.; Choi, U.; So, B.; Kim, S.; Nam, O.
    2020. Physica status solidi / A, 217 (12), Art.-Nr.: 1900973. doi:10.1002/pssa.201900973
  6. The Effect of AlN Buffer Layer on AlGaN/GaN/AlN Double‐Heterostructure High‐Electron‐Mobility Transistor
    Choi, U.; Jung, D.; Lee, K.; Kwak, T.; Jang, T.; Nam, Y.; So, B.; Nam, O.
    2020. Physica status solidi / A, 217 (7), Art.-Nr.: 1900694. doi:10.1002/pssa.201900694
  7. Direct Current and Radio Frequency Characterizations of AlGaN/AlN/GaN/AlN Double‐Heterostructure High‐Electron Mobility Transistor (DH‐HEMT) on Sapphire
    Choi, U.; Kim, H.-S.; Lee, K.; Jung, D.; Kwak, T.; Jang, T.; Nam, Y.; So, B.; Kang, M.-J.; Seo, K.-S.; Han, M.; Choi, S.; Lee, S.; Cha, H.-Y.; Nam, O.
    2020. Physica status solidi / A, 217 (7), Art.-Nr.: 1900695. doi:10.1002/pssa.201900695
  8. Comparison of MoS/p-GaN Heterostructures Fabricated via Direct Chemical Vapor Deposition and Transfer Method
    Lee, J.; Jang, H.; Kwak, T.; Choi, U.; So, B.; Nam, O.
    2020. Physica status solidi / A, 217 (7), Art.-Nr.: 1900722. doi:10.1002/pssa.201900722
  9. Growth and characterization of MoS/n-GaN and MoS/p-GaN vertical heterostructure with wafer scale homogeneity
    Lee, J.; Jang, H.; Kwak, T.; Choi, U.; So, B.; Nam, O.
    2020. Solid state electronics, 165, Art.-Nr.: 107751. doi:10.1016/j.sse.2019.107751
  10. Effects of NH3 pre-treatment time on nitrogen-polar GaN grown on carbon-face 4H-SiC using high-temperature metal-organic chemical vapor deposition
    Kim, M.; Choi, U.; Lee, K.; Jung, D.; Kwak, T.; So, B.; Ku, K.; Nam, O.
    2020. Journal of ceramic processing research, 21 (5), 579–585. doi:10.36410/jcpr.2020.21.5.579
  11. Growth behavior of GaN on AlN for fully coalesced channel of AlN-based HEMT
    Choi, U.; Lee, K.; Kwak, T.; Jung, D.; Jang, T.; Nam, Y.; So, B.; Kim, H.-S.; Cha, H.-Y.; Kang, M.-J.; Seo, K.-S.; Nam, O.
    2019. Japanese journal of applied physics, 58 (12), Art.-Nr.: 121003. doi:10.7567/1347-4065/ab4df3
  12. Large area deep ultraviolet light of AlGaN/AlGaN multi quantum well with carbon nanotube electron beam pumping
    Yoo, S. T.; So, B.; Lee, H. I.; Nam, O.; Chang Park, K.
    2019. AIP Advances, 9 (7), Art.-Nr.: 075104. doi:10.1063/1.5109956
  13. Effect on optical, structural and electrical properties by the AlGaN/AlGaN multi quantum wells with different well and barrier thicknesses
    Kim, T.; So, B.; Lee, J.; Nam, O.
    2019. Thin solid films, 680, 31–36. doi:10.1016/j.tsf.2019.04.031
  14. Effect of ammonia pretreatment on crystal quality of N-polar GaN grown on SiC by metalorganic chemical vapor deposition
    Choi, U.; Lee, K.; Han, J.; Jang, T.; Nam, Y.; So, B.; Kwak, T.; Nam, O.
    2019. Thin solid films, 675, 148–152. doi:10.1016/j.tsf.2019.01.049
  15. Growth behavior of wafer-scale two-dimensional MoS layer growth using metal-organic chemical vapor deposition
    Kwak, T.; Lee, J.; So, B.; Choi, U.; Nam, O.
    2019. Journal of crystal growth, 510, 50–55. doi:10.1016/j.jcrysgro.2019.01.020
  16. Deep-Ultraviolet AlGaN/AlN Core-Shell Multiple Quantum Wells on AlN Nanorods via Lithography-Free Method
    Kim, J.; Choi, U.; Pyeon, J.; So, B.; Nam, O.
    2018. Scientific reports, 8, Art.-Nr.: 935. doi:10.1038/s41598-017-19047-6
  17. Efficiency Improvement of Deep-Ultraviolet Light Emitting Diodes with Gradient Electron Blocking Layers
    So, B.; Kim, J.; Shin, E.; Kwak, T.; Kim, T.; Nam, O.
    2018. Physica status solidi / A, 215 (10), Art.-Nr.: 1700677. doi:10.1002/pssa.201700677
  18. Improved carrier injection of AlGaN-based deep ultraviolet light emitting diodes with graded superlattice electron blocking layers
    So, B.; Kim, J.; Kwak, T.; Kim, T.; Lee, J.; Choi, U.; Nam, O.
    2018. RSC Advances, 8 (62), 35528–35533. doi:10.1039/C8RA06982D
  19. Mg-compensation effect in GaN buffer layer for AlGaN/GaN high-electron-mobility transistors grown on 4H-SiC substrate
    Ko, K.; Lee, K.; So, B.; Heo, C.; Lee, K.; Kwak, T.; Han, S.-W.; Cha, H.-Y.; Nam, O.
    2017. Japanese journal of applied physics, 56 (1), Art.-Nr.: 015502. doi:10.7567/JJAP.56.015502
  20. Correlation Between Two-Dimensional Electron Gas Mobility and Crystal Quality in AlGaN/GaN High-Electron-Mobility Transistor Structure Grown on 4H-SiC
    Heo, C.; Jang, J.; Lee, K.; So, B.; Lee, K.; Ko, K.; Nam, O.
    2017. Journal of nanoscience and nanotechnology, 17 (1), 577–580. doi:10.1166/jnn.2017.12428
  21. GaN Growth on SiC (0001) Substrates by Metal-Organic Chemical Vapor Deposition
    Lee, K.; So, B.; Lee, K.; Heo, C.; Ko, K.; Jang, J.; Nam, O.
    2016. Journal of nanoscience and nanotechnology, 16 (11), 11802–11806. doi:10.1166/jnn.2016.13598
  22. Effect of HCl Chemical Reaction Etching on Thick Semipolar (11–22) GaN Growth by Hydride Vapor Phase Epitaxy
    Choi, U.; Woo, S.; Lee, S.; So, B.; Nam, O.
    2016. Journal of nanoscience and nanotechnology, 16 (11), 11619–11623. doi:10.1166/jnn.2016.13562
  23. GaN Epitaxial Layer Grown with Conductive Al Ga N Buffer Layer on SiC Substrate Using Metal Organic Chemical Vapor Deposition
    So, B.; Lee, K.; Lee, K.; Heo, C.; Pyeon, J.; Ko, K.; Jang, J.; Nam, O.
    2016. Journal of nanoscience and nanotechnology, 16 (5), 4914–4918. doi:10.1166/jnn.2016.12256
  24. Defect reduction in m-plane GaN on m-sapphire via lateral epitaxial overgrowth by hydride vapor phase epitaxy
    Kim, M.; Woo, S.; So, B.; Shim, K. B.; Nam, O.
    2016. Journal of Ceramic Processing Research, 17 (10), 1015–1018
  25. Defect reduction of SiN embedded m -plane GaN grown by hydride vapor phase epitaxy
    Woo, S.; Kim, M.; So, B.; Yoo, G.; Jang, J.; Lee, K.; Nam, O.
    2014. Journal of crystal growth, 407, 6–10. doi:10.1016/j.jcrysgro.2014.08.014
  26. Effect of nitridation on the orientation of GaN layer grown on m-sapphire substrates using hydride vapor phase epitaxy
    Nam, O.; Won, Y.; So, B.; Woo, S.; Lee, D.; Kim, M.
    2014. Journal of Ceramic Processing Research, 15 (2), 61–65